Improvement in retinal image quality with dynamic correction of the eye's aberrations.
نویسندگان
چکیده
We measured the improvement in retinal image quality provided by correcting the temporal variation in the eye's wave aberration with a closed-loop adaptive optics system. This system samples the eye's wave aberration at rates up to 30 Hz. Correction of the eye's aberrations can be completed in 0.25-0.5 seconds, resulting in residual rms wave-front errors as low as 0.1 microns for 6.8 mm pupils. Real-time wave-front measurements were used to determine how effectively the spatial and temporal components of the eye's wave aberration were corrected. The system provides dynamic correction of fluctuations in Zernike modes up to 5 th order with temporal frequency components up to 0.8 Hz. Temporal performance is in good agreement with predictions based on theory. Correction of the temporal variation in the eye's wave aberration increases the Strehl ratio of the point spread function nearly 3 times, and increases the contrast of images of cone photoreceptors by 33% compared with images taken with only static correction of the eye's higher order aberrations.
منابع مشابه
Neural compensation for the eye's optical aberrations.
A fundamental problem facing sensory systems is to recover useful information about the external world from signals that are corrupted by the sensory process itself. Retinal images in the human eye are affected by optical aberrations that cannot be corrected with ordinary spectacles or contact lenses, and the specific pattern of these aberrations is different in every eye. Though these aberrati...
متن کاملAberrations and retinal image quality of the normal human eye.
We have constructed a wave-front sensor to measure the irregular as well as the classical aberrations of the eye, providing a more complete description of the eye's aberrations than has previously been possible. We show that the wave-front sensor provides repeatable and accurate measurements of the eye's wave aberration. The modulation transfer function of the eye computed from the wave-front s...
متن کاملMeasurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye
A special challenge arises when pursuing multi-wavelength imaging of retinal tissue in vivo, because the eye's optics must be used as the main focusing elements, and they introduce significant chromatic dispersion. Here we present an image-based method to measure and correct for the eye's transverse chromatic aberrations rapidly, non-invasively, and with high precision. We validate the techniqu...
متن کاملVisual performance after correcting the monochromatic and chromatic aberrations of the eye.
The development of technology to measure and correct the eye's higher-order aberrations, i.e., those beyond defocus and astigmatism, raises the issue of how much visual benefit can be obtained by providing such correction. We demonstrate improvements in contrast sensitivity and visual acuity in white light and in monochromatic light when adaptive optics corrects the eye's higher-order monochrom...
متن کاملVision improvement by correcting higher-order aberrations with phase plates in normal eyes.
PURPOSE To psychophysically demonstrate vision improvement when correcting higher-order aberrations with phase plates in normal eyes. METHODS The wavefront aberrations of three nonsurgical normal eyes were measured with a Shack-Hartmann wavefront sensor. With these measured aberrations, phase plates were fabricated using a lathing technique. Theoretical improvement in retinal image quality wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 8 11 شماره
صفحات -
تاریخ انتشار 2001